Space In General

First ever magnetic field reversal of a black hole observed in distant galaxy? We know magnetic field reversals occur on the Sun and on Earth, but there is no generally accepted explanation for the how and why of any of this.
 

That's just what they want us to think...

360_F_134551194_N2cgGdVVVp6yVXkxGl5NMzSsibtnxgDB.jpg



Elsewhere on Mars, the InSight probe is running on borrowed time. The solar panels are too covered with dust to generate enough power to keep it running, especially with the reduced daylight hours of the Martian winter season coming up soon. Still it did manage to exceed its estimated lifespan by about a year and a half, which is pretty impressive in its own right.
 
I usual take morning photos, of sunrises, at my work. Looked up on Thursday and saw four bright stars, in line with the moon. Had no idea about them being Saturn and Jupiter among Mars and Venus. My phone is crap, but just happened to look up planet alignments about 15 minutes ago. Didn't see any news about it. Especially, with all the recent Australian election news and tragic news in Texas .
IMG_20220526_060516_658.jpg
 
From this morning's edition of Spaceweather.com:

A METEOR OUTBURST MIGHT HAPPEN TONIGHT: Yes, debris from Comet 73P/Schwassmann-Wachmann 3 might actually be approaching Earth. Last Friday, a camera operated by the Spanish Meteor and Fireball Network caught a piece of the broken comet disintegrating over Europe. The fireball they sawcould herald a larger cloud of debris following close behind. If it exists, the approaching cloud could cause a meteor outburst over North America on the night of May 30-31. That's tonight! Probably nothing will happen, but for enthusiasts it's worth a look. [full story] [sky map] [observing tips]
 
Starship 24 passed cryo proof testing on Thursday (after repairs for a part failure) and has now been lifted onto suborbital pad A for more testing.

 
The FAA environmental review has been released for Starbase (finally!) with a result of no significant impact. Now we wait for a launch license.

 
Last edited:
From yesterday's edition of space weather.com:

CME IMPACT ON JUNE 15TH: Arriving a few hours earlier than expected, a CME hit Earth's magnetic field on June 15th at 0437 UT. The glancing blow sparked a minor G1-class storm, underway now. More storms are possible in the hours ahead as Earth moves through the CME's dense, magnetized flank. Aurora alerts: SMS Text

MAPPING A MAGNETIC SUPERSTORM: Researchers have mapped the best and worst places in the USA to be during a severe geomagnetic storm. For residents of some big cities, the news is not good.

"Resistive structures in the crust and mantle of the Earth make cities along the east coast of the USA especially vulnerable to geomagnetic storms," says Jeffrey Love of the US Geological Survey (USGS), who led the study. "Hazards are greatest for power systems serving Boston, New York, Philadelphia, Baltimore, and Washington, DC, – a megalopolis of over 50 million people."


Above: Resistive structures in the crust of the Earth measured by the Earthscope project. Credit: Kelbert et al. (2019) [more]​

These conclusions are based on a new study of the biggest geomagnetic storm of the Space Age--the Great Québec Blackout of March 13, 1989. Millions of Quebecois spent a long winter night without lights or heat after a pair of CMEs hammered Earth's magnetic field. The Hydro-Québec power grid was down for more than 9 hours.

What would happen if the same geomagnetic storm struck again? That's what Love's team wanted to find out. They combined old measurements of magnetic activity during the 1989 storm with new measurements of Earth's crust to pinpoint the hazard zones.

At this point, it may be useful to review what happens during a geomagnetic storm. When a CME hits Earth's magnetic field, our magnetic field vibrates. If you had a sensitive-enough compass, you could see the needle quivering. Next, because of Faraday's Law, electrical currents begin to flow through conductors. Power lines, pipes, even rocks conduct these geomagnetically induced currents (GICs). Together, Earth and power lines form an electrical circuit; if too much current flows into the power grid it can cause a blackout.


Above: During a geomagnetic storm, geomagnetically induced current (GIC) flows through power lines and the Earth itself. Credit: GAO

In 1989 researchers didn't know much about the Earth-half of the circuit. That has changed. In 2006, the Earthscope project began sounding our planet's crust to determine the 3D electrical properties of deep rock. It turns out, there are huge variations in conductivity from place to place. The type of rock a city sits on determines how vulnerable it is to geomagnetic storms.

In retrospect, Québec was especially vulnerable. The province sits on an expanse of Precambrian igneous rock that does a poor job conducting electricity. When the March 13th CMEs arrived, storm currents found a more attractive path in the high-voltage transmission lines of Hydro-Québec. Unusual frequencies began to flow through the lines, transformers overheated and circuit breakers tripped.

Assuming that the Québec storm was underway again, Love's team mapped electric fields around much of North America. Measured in units of Volts per kilometer (V/km), these fields predict how much current will be pushed through wires at ground level. The higher the value, the bigger the hazard.


Above: If you live near an orange dot you might be in trouble during a geomagnetic superstorm. The color-coded dots represent peak geoelectric field amplitudes. Credit: Love et al (2022). [movie]

"Peak 1-min-resolution geoelectric field amplitudes ranged from 21.66 V/km in Maine and 19.02 V/km in Virginia to <0.02 V/km in Idaho," says Love. "Our maps show where utility companies might concentrate their efforts to mitigate the impacts of future magnetic superstorms."

With Solar Cycle 25 ramping up to a new Solar Maximum expected in 2025, the hazard maps are coming not a moment too soon.

You can read Love et al.'s original research in the May 2022 edition of the research journal Space Weather. Click here.
 
With a launch in California this morning and yet another in Florida about an hour ago, SpaceX has completed a trio of missions within 36 hours.



 
Booster 7 is on its way to the launch site, now with 33 Raptor engines installed. Hopefully for the last time before the orbital flight.

 
Starship 24 is getting some fancy details before it's possible trip to the launch site for testing this week. (or Tuesday)


 
Last edited:
Back